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Abstract
We study the influence of Casimir energy on the critical field of a
superconducting film, and we show that by this means it might be possible
to directly measure, for the first time, the variation of Casimir energy
that accompanies the superconducting transition. It is shown that this
novel approach may also help clarify the long-standing controversy on the
contribution of TE zero modes to the Casimir energy in real materials.

PACS numbers: 03.70.+k, 74.20.−z, 74.25.−q, 74.76.Db

1. Introduction

The last ten years have witnessed intense experimental work on the Casimir effect [1]. The
terrific improvements in experimental techniques made it possible to measure the Casimir
force with an unprecedented precision, at the per cent level, with respect to the historical
experiments performed only a few decades ago. It seems fair enough to summarize the present
situation by saying that the experiments on the Casimir force have shown good quantitative
agreement with the theory, within the limits that are reasonable for experiments dealing with
macroscopic physics, and hence one may wonder what comes next. While there remain
important issues to be addressed (most notably that of thermal corrections in real materials)
which require further experimental refinements especially at large separations, we think the
time has come to search for entirely new directions of experimental activity on the physical
effects of vacuum fluctuations, going beyond force measurements. It occurred to us that no
experiments yet exist, which probe directly the physical effects of Casimir energy. Energy
is a more fundamental quantity than force, and therefore it seems to us that this would be a
rewarding target.

In view of the important role that the energy of vacuum fluctuations may have played
in the Early Universe, we considered two possible directions as interesting. One deals with
the gravitational effects of the Casimir energy, and indeed some time ago [2] we studied

1 Talk given by this author.
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Figure 1. Scheme of the superconducting five-layer cavity.

the feasibility of an experiment aimed at verifying the validity of the equivalence principle
of general relativity for the zero-point energy of vacuum fluctuations. While we are still
working on this problem, the findings in [2] indicate that such an experiment might be
feasible, provided that signal modulation problems can be solved. The second direction that
we undertook concerns the influence of Casimir energy on phase transitions. We studied in
particular the superconducting phase transition [3], and this contribution provides a summary
of the work done so far. The results are very encouraging, and indeed the INFN has recently
sponsored our experiment ALADIN2, to test the effects that are described in this paper. This
represents a new approach to the Casimir effect that might contribute also to clarify some
controversial issues regarding the Casimir effect in real materials.

The plan of the paper is as follows: in section 2 we present the general theoretical ideas
involved in our experiment2, while section 3 explains how to use Lifshitz theory to compute
the variation of Casimir energy across the superconducting transition. In section 4, we present
the results of our numerical computations, and in section 5 we examine the issue of the
contribution of the TE zero mode. Finally, section 6 contains our conclusions and a discussion
of the results.

2. The Casimir effect in a superconducting cavity

Consider the double cavity shown in figure 1, obtained by placing a thin superconducting film,
with thickness D, between the plates of a rigid plane-parallel Casimir cavity. The two gaps at
the sides of the film, of common width L, are filled with some insulator. It is well known that
the magnitude of the Casimir effect depends on the reflective power of the layers forming the
cavity. Now, experiments show [4] that the reflective properties of a superconducting film, in
the microwave region of the spectrum, are drastically different from those in the normal state.
Therefore one can foresee that both the Casimir free energy stored in the cavity and the Casimir
force on the outer plates change when the film passes from normal (n) to superconducting (s),
and one wonders if there is a way to measure these effects. A standard force measurement
on the outer plates would be certainly impractical, because the variation of the Casimir force
across the transition is extremely small [5]. The reason for this is easy to understand, and
is due to the fact that the transition to superconductivity affects the reflective power of the
film only at wavelengths of order ch̄/(kTc) � 2 mm (for a typical critical temperature Tc �
1 K), which are very far from the submicron range, that gives the dominant contribution to the
Casimir force for typical Casimir cavities. In fact, we estimated that in typical conditions the

2 The experimental aspects of the setup are discussed in a separate paper in this issue.
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relative variation of the Casimir force is of order 10−8 or less, which is clearly immeasurable
within the present level of precision, which is only of a few per cent. Therefore, one has to
consider alternative effects, and we realized that a feasible scheme involves the measurement
of the critical magnetic field required to destroy the superconductivity of the film. Let us see
why this new approach may very well work.

As is well known, superconductors show perfect diamagnetism, as they expel magnetic
fields from their interior. However, this is true only for magnetic fields not exceeding a critical
value Hc, above which it becomes energetically convenient for the superconductor to revert to
the normal state and let the magnetic field in. For standard samples, the value of Hc can be
obtained by equating the magnetic work W , done to expel the critical field, to the so-called
condensation energy of the superconductor Econd(T ), defined as the difference among the
Helmholtz free energies of the film, in the n and in the s state [6]. For a thick film (with
thickness D much greater than the superconductor penetration depth λ and correlation length
ξ ) and a parallel field, one finds W = V H 2/(8π), with V the volume of the film, and therefore
one gets for Hc‖ the equation:

V
H 2

c‖
8π

= Econd(T ). (1)

What happens if the film is placed now inside a Casimir cavity? With respect to the previous
situation, we have to take into account that the magnetic work W must now be balanced against
the condensation energy of the film plus the difference �F

(C)
E (T ) = F (C)

n (T ) − F (C)
s (T )

between the Casimir free energy F
(C)
n/s (T ) in the n/s states of the film, respectively, and

therefore one obtains the following modified equation for the critical field:

V

(
H cav

c‖
)2

8π
= Econd(T ) + �F

(C)
E (T ). (2)

On intuitive grounds, we expect �F
(C)
E (T ) to be a positive quantity, because in the

superconducting state the film should be closer to behaving as an ideal mirror, than in the
normal state, and therefore F (C)

s (T ) should be more negative than F (C)
n (T ). In view of

equation (2), this implies that the critical field should be shifted by the Casimir term towards
larger values. Upon comparing equations (1) and (2), we see the shift of critical field should
have a relative magnitude approximately equal to

δHc‖/Hc‖ ≈ �F
(C)
E (T )

/
(2Econd(T )). (3)

The key point to note here is that the relative shift of critical field is determined by the ratio of
�F

(C)
E (T ) not to F

(C)
n/s (T ) (as explained earlier this ratio is going to be very small indeed) but

rather to the condensation energy of the film. Now, the latter quantity is very small for a thin
film, and for a film thickness of a few nm,3 it is easily several orders of magnitude smaller
than typical Casimir energies. Therefore, even if �F

(C)
E (T ) is a tiny fraction of the Casimir

energy of the cavity, it may be easily comparable to Econd, and produce a measurable shift of
critical field. In fact, in the case of a Be film, we estimated that a relative variation of Casimir
energy as small as one part in 108, could still correspond, close to Tc, to more than 10% of
Econd and would therefore induce a shift of critical field of over 5%!

3 For such ultrathin films, equations (1) and (2) above should be modified to take account of incomplete field
expulsion in thin films. However, the final formula for the relative shift equation (3) remains unaltered. See [3] for
the details.
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3. Computation of ∆F (C)
E (T )

We have evaluated �F
(C)
E (T ) by means of Lifshitz theory for the Casimir effect in dispersive

media [7]. We recall that the fundamental physical assumption of that theory is that one can
describe, in the relevant range of frequencies, the propagation of electromagnetic waves in the
material bodies forming the cavity, by means of a complex permittivity ε(ω), depending only
on the frequency ω and not on the wave-vector q. Therefore, Lifshitz theory cannot be applied
in situations where space dispersion becomes important. In our case, the applicability of
such a theory to the computation of �F

(C)
E (T ) might be questioned, because the characteristic

wavelengths which occur in the determination of �F
(C)
E (T ), as pointed out earlier, belong

to the microwave region of the spectrum, where normal metals may show an anomalous
skin effect. This is especially true at cryogenic temperatures, when the anomalous region
further extends, due to longer electron’s mean free paths. In the superconducting state of
the film, non-local effects may be even more important because, due to the small skin depth
of electromagnetic fields in superconductors, the anomalous skin effect is observed, in clean
superconductors, even inside the frequency domain characteristic of the normal skin effect in
normal metals (extreme anomalous skin effect). Fortunately, however, non-local effects are
less important in ultrathin films (with thickness D much smaller than the penetration depth λ),
than in bulk samples. The reason is that the electron mean free paths in ultrathin films cannot
be very large, even in the superconducting state. For example, the authors of [8] quote a mean
free path of 64 nm in pure ultrathin superconducting Be films with a thickness D = 4.2 nm
(Tc = 0.6 K). Therefore, when considering ultrathin films, one is in the so-called dirty case,
where local electrodynamics remains a valid approximation. This is confirmed by experiments
[4], showing that the film conductivity is independent of film thickness, for small thicknesses.

Let us briefly recall how to compute �F
(C)
E (T ). As is well known, there exists a simple

derivation of the Lifshitz formula for the Casimir energy in dispersive media, based on
consideration of the stationary modes of the cavity [9]. This approach is best suited to study
our five-layer system (see figure 1), for which the original Lifshitz method would be very
complicated. The electric permittivities of the layers are denoted as follows: εn/s represents
the permittivity of the film, in the n/s states respectively, while ε1 is the permittivity of the
insulating layers. Last, ε2 is the permittivity of the outermost thick normal metallic plates.
According to the mode method, one can write the unrenormalized variation of Casimir energy
�E

(C)
0 , at T = 0, as

�E
(C)
0 = h̄A

2

∫
dk1 dk2

(2π)2

∑
α=TE,TM

∑
p

(
ω

(n,α)
k⊥,p − ω

(s,α)
k⊥,p

)
, (4)

where A � L2 is the area, k⊥ = (k1, k2) denotes the two-dimensional wave vector in the xy

plane, while ω
(n/s,TM)

k⊥,p

(
ω

(n/s,TE)

k⊥,p

)
denote the proper frequencies of the TM (TE) modes, in the

n/s states of the film, respectively. Upon using the Cauchy theorem (for details, we address
the reader to chapter 4 in [10])4, we can rewrite the sums in equation (4) as integrals over
complex frequencies iζ :(∑

p

ω
(n,TM)
k⊥,p −

∑
p

ω
(s,TM)
k⊥,p

)
= 1

2π

∫ ∞

−∞
dζ log

�(1)
n (iζ )

�
(1)
s (iζ )

, (5)

4 When comparing the formulae of this paper with those of [10], please note that our L and D correspond, respectively,
to d and a of [10], while the TM and TE modes are labelled there by the suffices (1) and (2), respectively. Note also
that in our configuration the central layer is constituted by the superconducting film, and not by the vacuum, and
hence its permittivity, denoted by ε0 in [10], is not equal to 1, but rather to εn/s depending on the state of the film.
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where �
(1)
n/s(iζ ) is the expression in equation (4.7) of [10] (evaluated for ε0 = εn/s). A similar

expression can be written for the TE modes, which involves the quantity �
(2)
n/s(iζ ) defined in

equation (4.9) of [10]. It is interesting to note that the integral on the rhs of equation (5) is finite
because, as observed earlier, the ratio �(1)

n (iζ )
/
�(1)

s (iζ ) is appreciably different from one only
for frequencies ζ in the microwave region (the same is true for the TE contribution). Therefore,
there is no need here for an infinite renormalization, contrary to what usually happens when
evaluating Casimir energies. There is however a finite subtraction to perform, because we
require that the variation of Casimir energy �E(C) should approach zero for infinite separations
L. Upon subtracting from equation (5) (and the analogous expression for TE modes) its limiting
value for L → ∞, and after performing the change of variables k2

⊥ = (p2 − 1)ζ 2/c2 in the
integral over k⊥, one gets the following expression for the (renormalized) variation of Casimir
energy,

�E(C) = h̄A

4π2c2

∫ ∞

1
p dp

∫ ∞

0
dζ ζ 2

∑
α=TE,TM

log
Qα

n

Qα
s

, (6)

where

Qα
I (ζ, p) =

(
1 − �α

1I�
α
12 e−2ζK1L/c

)2 − (
�α

1I − �α
12 e−2ζK1L/c

)2
e−2ζKI D/c

1 − (
�α

1I

)2
e−2ζKI D/c

(7)

and

�TE
j l = Kj − Kl

Kj + Kl

, �TM
j l = Kjεl(iζ ) − Klεj (iζ )

Kjεl(iζ ) + Klεj (iζ )
, (8)

Kj =
√

εj (iζ ) − 1 + p2 I = n, s, j, l = 1, 2, n, s. (9)

The extension of the above formulae to the case of finite temperature is straightforward. As is
well known this amounts to the replacement in equation (6) of the integration

∫
dζ/2π by the

summation kT /h̄
∑

l over the Matsubara frequencies ζl = 2πl/β, where β = h̄/(kT ), which
leads to the following expression for the variation �F

(C)
E (T ) of Casimir free energy:

�F
(C)
E (T ) = A

kT

2

∞∑
l=−∞

∫
dk⊥

(2π)2

(
log

QTE
n

QTE
s

+ log
QTM

n

QTM
s

)
. (10)

As we see, equations (6)–(10) involve the electric permittivities ε(iζ ) of the various layers at
imaginary frequencies iζ . For these functions, we have made the following choices.

For the outermost metal plates, we use a Drude model for the electric permittivity:

εD(ω) = 1 − �2

ω(ω + iγ )
, (11)

where � is the plasma frequency and γ = 1/τ , with τ the relaxation time. We denote by
�2 and τ2 the values of these quantities for the outer plates. As is well known, the Drude
model provides a very good approximation in the low-frequency range ω ≈ 2kTc/h̄ � 1011–
1012 rad s−1 which is involved in the computation of �F

(C)
E (T ) and �E(C). The relaxation

time is temperature dependent and for an ideal metal it becomes infinite at T = 0. However, in
real metals, the relaxation time stops increasing at sufficiently low temperatures (typically of
order a few K), where it reaches a saturation value, which is determined by the impurities that
are present in the metal. Since in a superconducting cavity the temperatures are very low, we
can assume that τ2 has reached its saturation value and therefore we can treat it as a constant.
The continuation of equation (11) to the imaginary axis is of course straightforward and gives

εD(iζ ) = 1 +
�2

ζ(ζ + γ )
. (12)
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Figure 2. Plots of mσ ′
s (ω)/(ne2τn), for T/Tc = 0.3 (solid line), T/Tc = 0.9 (dashed line) and

T = Tc (point-dashed line). On the abscissa, the frequency ω is in reduced units x0 = h̄ω/(2�(0))

and y0 = 2�(0)/τn � 8.7.

For the insulating layers, we take a constant permittivity, equal to the static value:

ε1(ω) = ε1(0). (13)

Again, this is a good approximation in the range of frequencies that we consider.
As for the film, in the normal state we use again the Drude expression equation (11), with

appropriate values for the plasma frequency �n and the relaxation time τn.
The permittivity εs(iζ ) of the film in the superconducting state cannot be given in closed

form and we have evaluated it by using the Mattis–Bardeen formula for the conductivity σs(ω)

of a superconductor in the local limit q → 0 of BCS theory. Actually, for the evaluation of
�F

(C)
E (T ) we need only consider the real part σ ′

s (ω) of the complex conductivity, because the
expression of the permittivity εs(iζ ) along the imaginary axis, which occurs in the Lifshitz
formula, can be obtained from that of σ ′

s (ω) by use of the dispersion relation

εs(iζ ) − 1 = 8
∫ ∞

0
dω

σ ′
s (ω)

ζ 2 + ω2
. (14)

The reader can find explicit formulae for σ ′
s(ω) in [3]. Here, we observe only that σ ′

s (ω) can
be thought of as the sum of three contributions: a δ function at the origin, a broad thermal
component that diverges logarithmically at ω = 0 and a direct absorption component, with
an onset at 2�(T ). At any T < Tc, complete specification of σ ′

s (ω) requires fixing three
parameters: besides the free electron density n (or equivalently the square of the plasma
frequency �2

n = 4πne2/m) that provides the overall scale of σ ′
s , and the relaxation time for

the normal electrons τn, both of which already occur in the simple Drude formula, σ ′
s (ω) only

depends on one extra parameter, i.e. the gap �. We point out that this expression for σ ′
s is valid

for arbitrary relaxation times τn, i.e. for arbitrary mean free paths, and in particular it holds
in the so-called impure limit y = 2�/(h̄τn) � 1, where the effects of non-locality become
negligible.

We point out that at fixed ω for T → Tc, as well as at fixed T < Tc for x ≡ h̄ω/(2�) →
∞, σ ′

s (ω) approaches the Drude expression σ ′
D(ω)

σ ′
D(ω) = 1

4π

�2τ

1 + ω2τ 2
. (15)

The convergence of σ ′
s(ω) to σ ′

D(ω) in the frequency domain is in fact very fast, and already for
x of order 10 or so σ ′

s becomes undistinguishable from σ ′
D, in accordance with experimental

findings [4]. In figure 2 we show the plots of σ ′
s (ω)m/(ne2τn), for three values of the

reduced temperature t ≡ T/Tc, i.e. t = 0.3, 0.9 and t = 1. The curves are computed for
y0 = 2�(0)/τn � 8.7. Frequencies are measured in reduced units x0 = h̄ω/(2�(0)).
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Figure 3. Plots of �F
(C)
E (in erg) as a function of L (in nm) for D = 5 nm, Tc = 0.5 K, t = 0.9.

See text for the values of the other parameters. Also shown is the plot (dashed line) of a fit of the
type 1/(1 + (L/L0)

α), with L0 = 8.3 nm and α = 1.15.

4. Results

We have evaluated numerically �F
(C)
E (T ), and the results of the computation can be

summarized as follows:

• The contribution of TM modes to �F
(C)
E (T ) is negligible with respect to that of TE modes

(by three orders of magnitude or so).
• �F

(C)
E (T ) is practically independent (to better than four digits) of the value of the dielectric

constant of the insulating gaps.
• �F

(C)
E (T ) increases with film thickness D and saturates for D � c/�p � 10 nm.

• �F
(C)
E (T ) increases when the gap separation L decreases, and approaches a finite limit,

for L → 0.
• �F

(C)
E (T ) increases significantly with the plasma frequency of the film �n and of the

outer plates �2.
• �F

(C)
E (T ) has a maximum for values around 10 of the impurity parameter y.

In figure 3 we show the plot of �F
(C)
E (in erg) as a function of the width L (in nm) of

the insulating gap, for D = 5 nm, Tc = 0.5 K, y = 15, t = 0.9, �n = �2 = 18.9 eV,
τ2 = 2.4 × 10−12 s. We observe that �F

(C)
E is always positive, which corresponds to the

intuitive expectation that transition to superconductivity of the film leads to a stronger Casimir
effect, i.e. to lower Casimir free energy. The data can be fit very accurately by a curve of the
type

�F
(C)
E (L) ∝ 1

1 + (L/L0)α
, (16)

where L0 = 8.3 nm and α = 1.15.
In figure 4 we show (solid line) the relative shift of the critical parallel field of a Be film,

as a function of t. The figure has been drawn by using the same parameters as in figure 3.
Note that the shift is positive, meaning that the critical field for the film placed in the cavity
is larger than the critical field for an identical film outside the cavity. The increase of critical
field relative shift as one approaches the critical temperature arises because, for t → 1, �F

(C)
E

and Econd approach zero at different rates. Indeed, while Econd vanishes as (1 − t)2,�F
(C)
E is

found to vanish approximately like the first power of 1 − t .

5. Contribution from the TE zero mode

In recent years many efforts have been made to compute the combined influence of temperature
and finite conductivity of the plates on the Casimir effect, and no agreement has been reached
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Figure 4. Plot (solid line) of the relative shift of parallel critical field for a Be cavity, as a function
of T/Tc. The point-dashed line has been computed using the plasma model for the outer plates.
Cavity parameters are as in figure 3.

among the experts on the proper way of calculating the contribution of the TE zero mode (i.e.
the l = 0 term in the Matsubara sum) to the Casimir free energy (see [11] for a discussion
of different points of view on this problem). This is a delicate issue because, according to
Lifshitz theory, the computation of this mode involves the quantity

C := (ζ 2ε(iζ ))|ζ=0. (17)

The problem is that, in the Matsubara formalism where ζ is discrete, C is ill defined if ε(iζ )

diverges at ζ = 0, which is the case for metals, and then the results depend on how one
resolves the ambiguity. If ζ is viewed as a continuous variable, one may define C as the limit
of (ζ 2ε(iζ )) for vanishing ζ . In this case, if one uses for the metal conductivity the Drude
model equation (12) (with a finite value of τ ), one obtains C = 0, and this implies that the
TE zero mode gives zero contribution to the Casimir free energy, irrespective of how large the
relaxation time τ is. The odd thing is that the result is different if, instead of the Drude model,
one uses the simpler plasma model

ε(iζ ) = 1 +
�2

p

ζ 2
, (18)

for then one finds C = �2
p, and therefore the zero mode gives a non-vanishing contribution,

reproducing the ideal metal case in the limit of infinite plasma frequency.
It is clear that in such a situation it would be very interesting to have the possibility of an

experimental verification of these effects, and we show below that a superconducting cavity
is very well suited for this purpose.

The computations presented in the previous section were performed by using the Drude
model, both for the lateral plates and the film (in the normal state), and therefore the computed
value of �F

(C)
E receives no contribution from the TE zero mode. We have repeated the

computation, by using this time the plasma model for the lateral plates and we denote by

�̃F
(C)

E the corresponding value of the variation of Casimir energy. Note that in this new
computation, we keep the Drude model for the film in the normal state, because this is the
limit of the BCS expression of the permittivity for T → Tc. In figure 5 we plot (dashed

line) �̃F
(C)

E as a function of t. We point out that the inclusion of the TE zero mode has the
largest effect close to Tc, where it leads to an approximate doubling in the value of �F

(C)
E .

The reason of this is easy to understand: the zero mode becomes more and more important
in the critical region, because a decreasing number of Matsubara modes contribute to �F

(C)
E ,

as one approaches Tc, and therefore the inclusion or omission of a single mode makes a big
difference. That less and less modes contribute as we move towards Tc is clear, because
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Figure 5. Plot (solid line) of �F
(C)
E (in erg) as a function of t for L = 10 nm, D = 5 nm, Tc =

0.5 K, τn = 5 × 10−13 s. The point-dashed line was computed by using the plasma model for
lateral plates. Also shown (dashed line) is the plot of the low-temperature limit of the Matsubara
sum, equation (6). See text for further details.

the quantities
(
QTE

n

/
QTE

s

)
(iζ ) in equation (10) are substantially different from one only for

complex frequencies ζ of order a few times kTc/h̄. Since the lth Matsubara mode has a
frequency equal to 2πlkT /h̄, it is clear that the number of terms effectively contributing to
�F

(C)
E should be roughly proportional to Tc/T , and hence it is large for T � Tc, but becomes

small for T comparable to Tc. In figure 4 we show (point-dashed line) the shift of critical field
resulting from the plasma model, and we see that the amount of shift is almost doubled with
respect to that resulting from use of the Drude model. It seems, therefore, that if the shift can
be detected, it should be rather easy to distinguish among the two possibilities.

6. Conclusions and discussion

We have proposed a novel experimental approach to explore the physical effects of vacuum
fluctuations of the electromagnetic field, based on the use of superconducting Casimir cavities.
In our scheme, the object of interest is the Casimir energy itself, rather than the Casimir force,
as in all experiments performed so far. We have shown that the superconducting transition of
a thin film placed between the plates of a plane-parallel cavity, determines a small variation
of Casimir energy. While the associated variation of the Casimir force on the outer plates is
immeasurably small, we have found that there is a measurable effect on the critical magnetic
field required to destroy the film superconductivity. Because of the Casimir effect, the critical
field is larger than that of a similar film, not placed inside the cavity. The amount of the
shift depends on the temperature, on the geometric features of the cavity, and on the materials
chosen for the film and for the outer plates, and can be of the order of a few per cent.

The results presented in this paper represent the initial steps of a more general experimental
research programme, on the influence of vacuum fluctuations on phase transitions. This is a
new direction in the field of the Casimir effect that may contribute to a better understanding of
the general issue of the rôle of vacuum energy in phase transitions, which is of great interest
in diverse areas of physics, but most notably in cosmology.

We would also like to point out another couple of interesting features of our approach.
One is that we use rigid cavities, which may represent an advantage over conventional Casimir
experiments. As is well known, the experimental difficulty of controlling the parallelism
among macroscopic plane plates with submicron separations led the experimenters to consider
simpler geometries that do not suffer from this problem, such as the sphere-plane one, which
has been adopted in all precision experiments on the Casimir force (with the only exception
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of the experiment by Bressi et al [1], where the plane-parallel configuration is used, at the
price, however, of a reduced precision compared with the sphere-plate case). This limitation
has made it impossible so far to explore experimentally one of the distinguishing features of
the Casimir effect, i.e. its dependence on the geometry of the cavity. The use of rigid cavities
might make it possible to study geometries that are difficult to realize by using non rigid
cavities.

Another interesting feature of our scheme relates to the current interest in the study of the
Casimir effect in real materials, in particular for what concerns the influence of temperature
and of the finite conductivity of the materials. In standard Casimir force measurements, it
is generally quite difficult to measure these effects, because they typically represent small
corrections to the ideal case, and therefore they are difficult to extract from the signal. In
our setting, however, the effect is null if the film is treated as an ideal metal, and therefore
the signal arises entirely from the fact that the film is treated as a real material, with different
finite conductivities in the normal and in the superconducting state. Therefore, our approach
seems best suited to test our understanding of the Casimir effect in real materials. As an
example, we discussed the contribution from the TE zero mode. This is a controversial issue
in the current literature on thermal corrections to the Casimir effect. It is well known that,
for submicron plate separations, thermal corrections to the Casimir force are negligible at
cryogenic temperature, and become relevant only at room temperature. However, things are
different in our case, because close to Tc the shift of critical field is completely determined
by the few Matsubara modes with frequencies below or of order kTc/h̄, which is where the
reflective properties of a film change when it becomes superconducting. As a consequence,
different treatments of the TE zero mode lead to strongly different predictions for the shift of
critical field, at the level of doubling the shift, and this opens the way to a possible experimental
clarification of this delicate problem.

The verification of the effects described in this paper is the goal of the ALADIN2
experiment, financed by INFN, which is currently under way at the Dipartimento di Scienze
Fisiche dell’Università di Napoli Federico II. Further details on this experiment can be found
in a separate contribution, contained in this issue.
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